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Abstract

Several non-iterative algorithms for the analysis of stretched exponential decay are proposed. Decay parameters are
obtained by standard linear optimization methods, providing reasonable accuracy, high speed of processing and indepen-
dence of the initial guesses. The latter feature ensures an excellent possibility to use them for generating initial guesses for
iterative procedures, rendering the minimum search more reliable and faster. Proposed algorithms were investigated by
fitting simulated data and then used for the analysis of fluorescence and anisotropy decays of dimethylaminonitrostilbene
molecules dissolved in polymethyl methacrylate films. q 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

The evolution of electronic energy relaxation, tak-
ing place after a short impulse of optical excitation,
provides important information about the structure,
dynamics and photophysical properties of supra-
molecular structures containing chromophoric
molecules. One of the most powerful techniques for
the investigation of relaxation processes is the time-

Ž .correlated single photon counting TCSPC method
w x1,2 , where the fluorescence intensity decay of the
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fluorophore is analyzed in terms of a presumed
w xtheoretical decay law. Numerous investigations 3–5

have shown that adequate models for electronic en-
ergy relaxation in macromolecules cannot be defined
by the commonly used sum of exponentials, when a
mechanism of dipole–dipole energy transfer is taken
into account. In recent years, most attention has been
given to the stretched-exponential Forster decay law¨
w x4,6 , representing the first-order approximation of
dipole–dipole electronic energy transfer. Previous

w xexperience 7 indicates that stretched exponential
decay fitting is more difficult than the usual multi-
exponential analysis. An important problem is re-
lated to the influence of the initial guesses on the
efficiency of fit. Commonly used iterative fitting
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methods only work well when the initial guesses are
chosen close to the true values of parameters.

This paper proposes several non-iterative algo-
rithms for the analysis of stretched exponential de-
cay. Decay parameters are obtained by standard
methods of linear optimization, providing reasonable
accuracy, high speed of processing and independence
of the initial guesses. The latter feature enables to
use them for generating initial guesses for iterative
procedures, rendering the minimum search more reli-
able and faster.

2. Stretched exponential decay

When the concentration of donor molecules is
sufficiently low, such that the probability of multi-
stage energy migration processes is negligible and
energy is directly transferred to the random distribu-
tion of acceptors, the donor fluorescence decay can

w xbe represented by a stretched exponential 4 :

I t s I exp yltyg t d , 1� 4Ž . Ž .0

Ž . dwhere ls1rb b is the donor lifetime , gsCrb

ŽC is the parameter characterizing the amount of
w x.energy transfer 4 , I is the intensity at zero time0

Ž .ts0 and d is determined by the geometrical
Ždimension d of a sample as dsdr6 for two dimen-

.sions ds1r3, for three dimensions ds1r2 . Spe-
cial attention is attracted by samples with a so-called

Ž . w xfractal non-integer dimension 8 . In the latter case,
a theoretical calculation of the dimensional parame-
ter d is not straightforward, and often requires ap-
proximation.

Ž .If the dimensional parameter d in Eq. 1 is
known exactly, the estimation of the other parame-

Ž .ters I , l and g can be done after the transforma-0
Ž .tion of the stretched exponential Eq. 1 to a differen-

tial equation, which is linear with respect to the
w xunknown parameters 9 :

I X t sylI t ygd t dy1I t , 2Ž . Ž . Ž . Ž .
Ž .with the initial condition I 0 s I . Statistical distor-0

Ž .tions of the data, collected in I t , are smoothed by
Ž .integrating Eq. 2 :

t t
dy1I t syl I x d xygd x I x d xq I .Ž . Ž . Ž .H H 0

0 0

3Ž .

Application of the standard linear least squares
w xmethod 10 to the last equation yields:

N
ti

v t I t ql I x d xŽ . Ž . Ž .Ý Hi i½
0is1

2
ti dy1qgd x I x d xy I smin, 4Ž . Ž .H 0 5

0

Ž . Ž .where v t is the weight factor, equal to 1rI t ,i i

for the Poisson statistics of collected counts, and N
is the number of time channels.

Ž .The right part of Eq. 3 contains the component
x dy1, which becomes infinite when xs0 and d-1.
To avoid the problems of numerical implementation
arising in that case, integration should be done with a

Ž .special multiplication factor w x :

t Xw t I t y w x I x d xŽ . Ž . Ž . Ž .H
0

t
syl w x I x d xŽ . Ž .H

0

t
dy1ygd w x x I x d x . 5Ž . Ž . Ž .H

0

Ž . Ž .If, for instance, w t s t, Eq. 5 takes the form:

t t
tI t y I x d xsyl xI x d xŽ . Ž . Ž .H H

0 0

t
dygd x I x d x , 6Ž . Ž .H

0

in which the infinity component is eliminated. More-
over, the integration with the multiplication factor
has removed the amplitude I from the last equation.0

The amplitude is often only a scaling factor and not
really important. If, however, the amplitude I is0

required, the linear least-squares method can be ap-
Ž .plied directly to Eq. 1 , when parameters l are g

Ž .have been already defined according to Eq. 6 . The
w xmethods of error propagation 10 lead to the follow-

ing expression for the statistical weight in the linear
Ž . Ž 2 Ž ..least squares method: v t s1r t I t , where sta-

tistical noise of the integrals is ignored.
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Ž . Ž . Ž .Eqs. 3 , 4 and 6 can be readily adopted for
the analysis of decays with an additive background:

bŽ . Ž .I t s I t qB, where B is the intensity of back-
Ž .ground radiation. From Eq. 6 one obtains:

tb btI t y I x d xŽ . Ž .H
0

t tb d bsyl xI x d xygd x I x d xŽ . Ž .H H
0 0

ylBt 2r2 yg Bd t dq1r dq1 , 7Ž . Ž .
and the parameters of the stretched exponential de-
cay as well as the intensity of background can be
found by the linear least squares method.

The above considerations are valid, when the
dimensional parameter d is known. If it must be

Ž .estimated, linearization of Eq. 1 with respect to d

can be done in two ways. Both of them use the
Ž .logarithm of I t :

log I t s log I yltyg t d . 8Ž . Ž . Ž .Ž . 0

The idea consist of the elimination of the factor t d

Ž .from the final expressions. Combining Eqs. 2 and
Ž .8 yields:

t
tI t sd I x log I x d xŽ . Ž . Ž .Ž .H

0

t
y d log I y1 I x d xŽ . Ž .H0

0

t
ql dy1 xI x d x . 9Ž . Ž . Ž .H

0

Another transformation is done via the differentia-
Ž .tion of Eq. 8 with respect to t:
X dy1log I t sylydg t . 10Ž . Ž .Ž .

Ž . Ž .Substituting Eq. 10 into Eq. 8 gives the equation:

t
t log I t s 1qd log I x d xŽ . Ž . Ž .Ž . Ž .H

0

yd log I tql dy1 t 2r2. 11Ž . Ž . Ž .0

Ž . Ž .Eqs. 9 and 11 are linear and allow to estimate
the dimensional parameter d , lifetime b and initial
intensity I by standard means of linear optimiza-0

tion. The amount of energy transfer C can be di-
Ž . Ž .rectly derived from Eq. 4 or Eq. 6 , when the

dimensional parameter d has previously been esti-
mated.

3. Additional exponential term

Several modifications of the basic stretched expo-
Ž . w xnential decay law Eq. 1 were proposed 4,11 .

Heterogeneity in chromophore surroundings or pro-
cesses such as excimer formation lead to the appear-
ance of additional components in the fluorescence
decay of the investigated samples. In the simplest
case, one extra exponential term with the same decay
parameter l may be considered:

d � 4I t s I exp yltyg t qAexp ylt , 12� 4Ž . Ž .0

where A is the amplitude of the second component.
The extra component can be explained by a non-ho-
mogeneous distribution of acceptors, resulting in the

w xappearance of isolated donor molecules 4,11 . In
this section, we assume that the dimensional parame-
ter d is known exactly and fixed. It can be shown

Ž .that Eq. 12 is the solution of the following linear
differential equation:

Y X y1 dy1I t s I t dy1 t y2lygd tŽ . Ž . Ž .
y1 dy1 2qI t lt dy1 ygdlt yl ,Ž . Ž .

13Ž .
Ž . XŽ .with the initial conditions I 0 s I qA and I 0 s0

Ž .0. Integrating Eq. 13 twice with the multiplication
Ž .factor w t s t yields:

F g ,l,t sf t qls t qgls t qg s tŽ . Ž . Ž . Ž . Ž .0 1 2

ql2s t s0, 14Ž . Ž .3

where
t

f t sy dq3 xI x d xŽ . Ž . Ž .H
0

t 2y dq1 tyx I x d xy t I t ;Ž . Ž . Ž . Ž .H
0

t
s t sy dq3 x tyx I x d xŽ . Ž . Ž . Ž .H0

0

t 2y2 x I x d x ;Ž .H
0

t
dq1s t syd x tyx I x d x ;Ž . Ž . Ž .H1

0

t
dq1s t syd x I x d xŽ . Ž .H2

0

t
dy dq1 x tyx I x d x ;Ž . Ž . Ž .H

0

t 2s t sy x tyx I x d x . 15Ž . Ž . Ž . Ž .H3
0
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Ž .Eq. 14 is linear with respect to the parameters
l, g , gl and l2, which can be, for example, ob-
tained by the linear least squares method. Amplitude
parameters can be easily evaluated, applying the

Ž .least squares procedure to the primary Eq. 12 ,
when parameters l and g are already known. A
significant drawback of this approach is that it is
necessary to fit four coefficients of the linear Eq.
Ž .14 , while one has only two unknown parameters l

and g . An artificially extended set of unknown
Ž .parameters four instead of two requires an increase

Žof the dimension of the set of normal equations up
.to four in the method of least squares. Usually this

causes extra distortions in solution.
Ž .An alternative approach is to consider Eq. 14 as

a nonlinear functional equation with respect to two
Ž .unknowns, g and l. Then, minimization of Eq. 14

gives a set of two non-linear algebraic equations:

F g ,l,t s t qg s t q2ls t s0,� 4Ž . Ž . Ž . Ž .0 1 3

F g ,l,t ls t qs t s0. 16� 4Ž . Ž . Ž . Ž .1 2

Ž .The dimension of the set in Eq. 16 is small and
can easily be solved analytically. Testing has shown
that the latter approach ensures a higher accuracy of
solution compared to the first one and it can be
considered as a method of choice in the analysis of
stretched exponential decay with the added exponen-
tial term.

4. Anisotropy

Important information about energy migration can
be retrieved from fluorescence depolarization mea-
surements: the detected fluorescence anisotropy de-
pends on two main sources of depolarization, namely
excitation transfer and chromophore rotation. Let us
consider the case where molecules are motionless
during the time scale of a fluorescence decay experi-

Ž .ment for instance in solid solutions, e.g. polymers ,
and the time dependence of the fluorescence anisot-
ropy is exclusively determined by the process of
energy transfer. The anisotropy decay for donor–

w xdonor energy transfer takes the following form 12 :

r t sr exp yg t d , 17� 4Ž . Ž .0

where gsCrb d and r is the limiting anisotropy0
Ž . w xat ts0 . It was shown 13 that the function

� d 4exp yg t contains all information about energy
transfer that influences the anisotropy decay. If the
transition dipole distribution is not random, the fol-
lowing model for the anisotropy decay can be used:

r t sa exp yg t d qa , 18� 4Ž . Ž .1 2

where a represents the amplitude of the energy1

transfer component and a is a constant, time-inde-2

pendent component, which is due to, for example,
the nonrandom distribution of transition dipoles.
Analysis of the anisotropy decays can be performed
in the same way as for the fluorescence decay. For

Ž .example, application of the functional Eq. 7 to the
Ž .model, given by Eq. 18 , yields:

t t
dtr t y r x d xsygd x r x d xŽ . Ž . Ž .H H

0 0

yg a d t dq1r dq1 , 19Ž . Ž .2

and anisotropy parameters g and a can be readily2

recovered. The amplitude of the stretched exponen-
tial a can be obtained afterwards by application of1

Ž .the least squares method directly to Eq. 18 .

5. Deconvolution

The observed experimental decay curves only cor-
respond to the true ones when the light source
produces infinitely narrow excitation pulses and when
the response of the detection system is ultrafast. In

Ž .practice the detected fluorescence intensity f t is
represented by a convolution of the true decay func-

Ž .tion with the instrumental response function g t
w x14 :

t
f t s I tyx g x d x . 20Ž . Ž . Ž . Ž .H

0

It appeared not to be possible to find a direct
transformation of the convoluted stretched exponen-
tial decay curve to the functional equation, linear
with respect to the unknown parameters, as it is

w xpossible for multi-exponential 15 or unconvoluted
stretched exponential decays.

An alternative approach consists of the prelimi-
Ž .nary non-parametric deconvolution of Eq. 20 , thus
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Ž .getting undistorted fluorescence decay I t , which
can subsequently be fitted by the derived algorithms.
Numerous deconvolution routines are known. Among
them, probably the most appropriate one is based on
the approximation of the stretch exponential decay

w xcurve by a sum of exponentials 16 :

n

I t f A exp ytrt , 21Ž . Ž . Ž .Ý i i
is1

where A are the amplitudes of exponentials, t arei i

the decay times and n is the number of exponentials.
Ž .The decay times in Eq. 21 can be variable or fixed.

One usually needs up to four exponentials, when the
decay times are variable, and up to ten when they are
fixed. The set of parameters A and t can bei i

recovered by one of the common techniques for
w xmulti-exponential fitting 1,2 . These parameters then

can be used to generate the unconvoluted profile,
from which parameters of the stretched exponential
decay are evaluated. In this approach, the multi-ex-
ponential decay is used only for the approximation,
and the obtained parameters A and t do not con-i i

tain any physical meaning.
In the time-resolved method of anisotropy mea-

surements, the fluorescence intensity profiles for par-

Ž . Ž .allel f t and perpendicular f t components of5 H
emitted light are detected. These components are
related to the true functions of fluorescence and

w xanisotropy as 14 :

t
f t s I tyx 1q2 r tyx g x d x , 22Ž . Ž . Ž . Ž . Ž .H5

0

t
f t s I tyx 1yr tyx g x d x . 23Ž . Ž . Ž . Ž . Ž .HH

0

It is clear that in this situation direct application
of the linear algorithms for the analysis of the anisot-

Ž . Ž .ropy r t and fluorescence I t decays, represented
by stretched exponential functions, is impossible.
Analysis should be performed in several steps. First,

Ž .the true fluorescence decay I t , approximated by
Ž .Eq. 21 , can be deconvoluted from the total fluores-

Ž .cence profile of Eq. 20 and then fitted. The anisot-
Ž .ropy decay r t can also be approximated by a sum

of exponentials, parameters of which can be obtained
Ž Ž ..by simultaneous analysis of the parallel Eq. 22

Ž Ž ..and perpendicular Eq. 23 polarized components
w xof fluorescence 17 . The application of the linear

Table 1
Ž Ž ..Estimation of the parameters of stretch exponential decay Eq. 1 from simulated data

d Method Estimator Without instrumental response With instrumental response
U U

bs8.0 Cs1.0 d bs8.0 Cs1.0 d

0.75 Linear M 7.99 1.00 0.73 7.97 0.99 0.74
s 0.29 0.072 0.040 0.17 0.041 0.055

MNLLS M 7.97 1.00 0.74 7.99 0.99 0.75
s 0.18 0.046 0.030 0.15 0.037 0.026

0.5 Linear M 8.03 1.01 0.49 8.05 1.02 0.51
s 0.13 0.043 0.020 0.074 0.019 0.026

MNLLS M 7.98 0.99 0.49 7.99 1.00 0.49
s 0.078 0.021 0.012 0.063 0.017 0.013

1r3 Linear M 8.04 1.03 0.31 8.13 1.05 0.34
s 0.091 0.029 0.016 0.052 0.016 0.021

MNLLS M 7.97 0.99 0.33 8.00 1.00 0.33
s 0.050 0.016 0.0073 0.041 0.013 0.0091

1r6 Linear M 8.21 1.15 0.093 8.30 1.20 0.15
s 0.071 0.038 0.017 0.039 0.019 0.022

MNLLS M 7.98 0.99 0.17 7.99 0.99 0.16
s 0.031 0.014 0.0032 0.027 0.013 0.0061

ŽU . 4Number of channels is 256, width of a channel is 0.1 : 1024 channels, width of a channel 0.025 . Peak count 10 .
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Table 2
Ž Ž ..Estimation of the parameters of stretch exponential decay Eq. 12 from simulated data

d Method Estimator Without instrumental response With instrumental response

I s2.0 bs8.0 Cs3.0 As1.0 I s2.0 bs8.0 Cs3.0 As1.00 0

0.75 Linear M 2.00 8.00 3.00 1.00 2.00 7.99 3.01 1.00
s 0.020 0.066 0.055 0.019 0.016 0.057 0.044 0.015

MNLLS M 2.00 7.99 2.99 1.00 2.00 7.99 2.99 1.00
s 0.018 0.063 0.045 0.017 0.013 0.052 0.041 0.013

0.5 Linear M 2.03 7.96 3.10 1.02 2.06 7.93 3.16 1.03
s 0.033 0.071 0.11 0.024 0.027 0.054 0.082 0.017

MNLLS M 2.00 7.98 3.00 1.00 2.01 7.99 3.00 0.99
s 0.023 0.066 0.072 0.019 0.019 0.051 0.077 0.014

1r3 Linear M 2.28 8.03 3.45 1.03 2.17 7.82 3.26 1.08
s 0.16 1.13 0.32 0.17 0.095 0.043 0.16 0.015

MNLLS M 2.01 7.98 3.00 0.99 2.01 8.00 3.00 1.01
s 0.029 0.058 0.090 0.018 0.038 0.040 0.12 0.010

U1r6 Linear M 2.15 8.01 3.09 0.99 2.32 7.94 3.18 1.05
s 0.30 0.052 0.41 0.041 0.31 0.026 0.26 0.014

MNLLS M 1.99 7.99 2.99 1.01 2.00 8.00 3.00 1.01
s 0.025 0.021 0.056 0.0093 0.080 0.021 0.13 0.013

ŽU . 4Number of channels is 256, width of a channel is 0.1 : 1024 channels, width of a channel 0.025 . Peak count 10 .

algorithms for stretched exponential decay analysis
Ž . Ž .of r t is then straightforward see Section 4 .

6. Simulated data

The proposed algorithms were implemented and
thoroughly tested via simulations. We use the follow-

Ž .ing representation for the instrumental response g t
w x1 :

g t sexp ytr0.6 yexp tr1.1 . 24Ž . Ž . Ž . Ž .

All values here and further are given in relative
Žunits. The number of time channels is 256 the width

. Žof a channel is 0.1 or 1024 the width of a channel

Table 3
Ž Ž ..Estimation of the parameters of stretch exponential decay Eq. 18 from simulated data

d Method Estimator With constant anisotropy Without constant anisotropy

a s0.3 Cs2.0 a s0.1 a s0.3 Cs2.0 a s0.01 2 1 2

0.75 Linear M 0.29 1.91 0.098 0.30 2.06 0.00
s 0.0082 0.17 0.0041 0.0090 0.14 0.0023

MNLLS M 0.30 1.99 0.099 0.30 1.99 0.0002
s 0.0036 0.066 0.0021 0.0032 0.059 0.0018

0.5 Linear M 0.29 1.90 0.096 0.30 1.99 0.00
s 0.012 0.25 0.0073 0.013 0.20 0.0043

MNLLS M 0.30 1.99 0.098 0.30 1.99 0.0006
s 0.0058 0.092 0.0029 0.0052 0.082 0.0026

1r3 Linear M 0.30 1.92 0.092 0.29 1.90 0.010
s 0.019 0.42 0.016 0.022 0.43 0.014

MNLLS M 0.30 1.98 0.098 0.30 1.98 0.0021
s 0.0099 0.14 0.0044 0.0088 0.12 0.0039

1r6 Linear M 0.32 2.29 0.092 0.35 2.18 0.017
s 0.064 0.94 0.062 0.22 1.03 0.098

MNLLS M 0.31 1.96 0.096 0.30 1.95 0.0040
s 0.018 0.23 0.0082 0.015 0.21 0.0073

Number of channels is 256, width of a channel is 0.1. Fluorescence lifetime b is 5. Peak count 104.
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Ž . Ž .Fig. 1. Simulated dots and fitted smooth curve fluorescence
Ž Ž ..stretched exponential decay Eq. 1 for four values of the
Ž .dimensional parameter d : 0.75 the longest decay , 1r2, 1r3 and

Ž .1r6 the shortest decay . Residuals and autocorrelation function
of residuals are plotted for d s1r2.

. Ž . Ž . Ž .is 0.025 . Statistical noise, added to g t , f t , f t5

Ž .and f t is described by Poisson statistics: theH
number of counts in every channel is the Poisson
random value with the mean equal to the exact value
in that channel. The number of counts in the peak

4 Ž . Ž . Ž . Žchannel is set to 10 for g t , f t or f t the peak5

Ž .channel for f t is calculated according to Eqs.H
Ž . Ž ..22 and 23 . In every simulation experiment, the
estimation was repeated for 100 runs of the gener-
ated fluorescence and instrumental functions, each
one with a different realization of statistical noise.
The estimators are stored for the calculation of mean
value:

100
i� 4M p s p r100, 25Ž .Ýk k

is0

and variance:
100

2i2 2� 4 � 4s p s p r100yM p , 26Ž .Ýk k k
is0

where ip is the estimator for the k th parameter,k

obtained after the ith run.
Tables 1–3 present the dependence of the fitting

accuracy on the dimensional parameter d . Four val-
ues of dimensional parameter were used: 0.75
Ž w x. Ž .‘fractal’ dimension 8 , 1r2 three dimensions ,

Ž . Ž .1r3 two dimensions and 1r6 single dimension .
Typical results of the simulation and subsequent fit
in terms of single stretched exponential for fluores-

Ž Ž .. Ž Ž .cence Eq. 1 and for anisotropy Eq. 16 with
.a s0 are presented in Figs. 1 and 2, respectively,2

for four values of the dimensional parameter d .
Residuals and autocorrelation functions are plotted
for ds1r2. Fitted values of the parameters of stretch
exponential decay were used as initial guesses for
Marquardt non-linear method of least squares
Ž . w xMNLLS , described in detail elsewhere 10,18 . The
mean values and standard deviations of the estima-
tors obtained by MNLLS are also presented in the
tables for comparison. Numerical experiments show

Ž . Ž .Fig. 2. Simulated dots and fitted smooth curve anisotropy
Ž Ž ..stretched exponential decay Eq. 17 for four values of the
Ž . Ž . Ž . Ž .dimensional parameter d : 0.75 a , 1r2 b , 1r3 c and 1r6 d .

Residuals and autocorrelation function of residuals are plotted for
d s1r2.
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that MNLLS normally ensures less biased estimators,
Žespecially for smaller dimension parameters d ds

.1r3, 1r6 , as well as lower values of standard
deviations.

Table 1 contains the results of the restoration of
Ž . Ž .stretched exponential decay Eq. 1 . Eq. 6 is used

Žfor the estimation of the decay time b column 3 for
the undistorted decay and column 6 for the convo-

.luted decay and of the energy transfer parameter C
Žcolumn 4 for the undistorted decay and column 7

.for the convoluted decay , provided d is fixed to the
Žtrue value. The dimensional parameter d column 5

for the undistorted decay and column 8 for the
.convoluted decay was fitted separately according to

Ž .Eq. 9 . This algorithm requires an increased number
Ž .of time channels up to 1024 to allow good resolu-

tion. It should be noted that deconvolution in this
case does not significantly influence the accuracy of
fit.

The advantage of the proposed algorithm is
demonstrated in Fig. 3 by the dependence of the
convergence time of MNLLS with the manually

Fig. 3. Dependence of the convergence time of MNLLS with the
Ž Ž .manually chosen initial guesses Cs0.5, d s0.5 empty points

Ž ..and Cs2.0, d s0.5 filled points related to the convergence
times of MNLLS with the initial guesses, obtained by the pro-
posed algorithm, on the initial guess for the decay time b , for

Ž .stretched exponential decay 1 , accounting instrumental response
Ž . Ž .squares and without instrumental response rounds . True values

Žof parameters are: b s8.0, Cs1.0 and d s0.5 all values are
.given in relative units .

chosen initial guesses related to the convergence
times of MNLLS with the initial guesses, obtained
by the linear algorithm. The improvement is espe-
cially noticeable for the curves with instrumental
response, when one needs to calculate convolution
several times on each iteration. Good initial guesses,
decreasing the number of iterations, also decrease
computational costs.

Ž .Analysis of the intensity decay Eq. 12 was
Ž .based on the analytical solution of the set Eq. 16 of

algebraic equations. Results are presented in Table 2
for four fixed values of d . One can see that the
decay with the smallest values of d is the most
troublesome. The bias and variance, increases when
d tends to reach the lowest value. In order to have
reasonable resolution for ds1r6, one has even to
increase the number of time channels up to 1024.
This effect can be explained by strong coupling
between the parameters of the stretched exponential
decay, which sharply increases for the lowest value
of the dimensional parameter.

Table 3 contains the results of estimation of the
Ž .anisotropy decay parameters, represented by Eq. 18 .

Ž .Analysis was performed according to Eq. 19 . Two
cases were explored: stretched exponential with a

Ž .time-independent component a s0.1 and without2
Ž .time-independent component a s0 . Results show2

that the time-independent component can be ex-
tracted more or less confidently under the present
conditions, despite the fact that the correlation be-
tween the energy transfer parameter g and amplitude
a is very high. The latter is particularly seen for the2

decays with the lowest value of the dimensional
parameter.

Simulation experiments prove that the proposed
algorithms are suitable for the preliminary analysis
of a broad range of fluorescence decay models based
on stretched exponential decay law, ensuring reason-
able estimators for the parameters in most cases and
providing higher performance of the subsequent fit-
ting by MNLLS.

7. Experimental data

The presented algorithms were applied to fit the
experimentally obtained fluorescence and anisotropy

Ž .decays of dimethylaminonitrostilbene DANS
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Table 4
Estimated fluorescence and anisotropy parameters of DANS in
PMMA film

Fluorescence Anisotropy
2Estimator I b C A a C a x0 1 2

Linear 0.57 3.20 1.29 0.43 0.12 0.87 0.088 1.32
MNLLS 0.63 3.10 1.17 0.37 0.15 0.60 0.045 1.21
Left 0.53 2.55 0.98 0.33 0.09 0.30 0.00 1.35
Right 0.74 3.81 1.35 0.48 0.19 1.29 0.10 1.35

Ž .Confidence intervals Left and Right bounds for the parameters at
67% level are given for MNLLS.

molecules dissolved in polymethyl methacrylate
Ž .PMMA film. We consider this substance as having

Ž .three dimensions ds0.5 , as the thickness of
PMMA film is much larger than the molecular size
of DANS. Experimental decays have 1024 data points
and the resolution per data point is 10 ps. The

Ž .Fig. 4. Experimental noisy curve fluorescence decay of DANS
Ž .in PMMA film and decay fitted smooth curve by stretched

Ž Ž .. Žexponential decay law Eq. 12 . Instrumental function the nar-
.rowest curve was normalized to the maximum of fluorescence

curve.

Ž .Fig. 5. Experimental noisy curve anisotropy decay of DANS in
Ž .PMMA film and decay fitted smooth curve by stretched expo-

Ž Ž ..nential decay law Eq. 18 .

instrumental response function for deconvolution was
obtained using a scattering solution. The details of
the experimental set-up used for the polarized fluo-
rescence decay measurements and sample prepara-

w xtion have been described elsewhere 19 .
ŽThe results of the fit for the sample excited at

.527 nm and detected at 580 nm are given in Table
Ž .4. Eq. 12 was used for the approximation of the

Žfluorescence decay of DANS in PMMA containing
.10 wt.% DANS . Anisotropy analysis was done in

Ž .terms of Eq. 18 . The goodness of fit was judged by
the x 2 criterion and by the autocorrelation function

w xof residuals 18 . The error estimation of the recov-
ered parameters was performed by the exhaustive

w xsearch method 20 . Typical results of the deconvolu-
tion for the fluorescence and anisotropy decays of
DANS in PMMA film are presented in Figs. 4 and 5,
respectively.

Table 4 shows that, although MNLLS undoubt-
Žedly improves the total fit quality expressed in
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2 .lower values of x criterion , in all cases the param-
eters, predicted according to the proposed algo-
rithms, are already reasonably good and fall within
the parameter confidence interval obtained by MN-
LLS. Having such initial guesses, MNLLS often
needs just a couple of iterations to find x 2 minima.
For that reason, the proposed algorithms lead to a
considerable improvement in performance the fluo-
rescence decay analysis software.
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